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Abstract: Self-organizing criticalities are a much studied notion, within disciplines ranging from1

ecosystems/living systems to economic systems and markets. But there is still no consensus or2

general framework for explaining the ’spontaneous’ emergence of this kind of ’orderly’ behavior.3

This paper generalizes the second law of thermodynamics to dynamic state-spaces with increasing4

dimensionality and introduces the notion of spate-space curvature, in order to provide such a5

framework6
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1. Introduction10

The reader is expected to be familiar with the fact that the second law of thermody-11

namics is often popularized as stating that (a certain class of) systems tend to move from12

order to disorder (showing an increase in entropy), and that the most notable alleged13

exception to this is the spontaneous emergence of life-forms (so-called Self-organizing14

Criticalities (SoC))[1] [2]: somehow life seems to defy this law, at least for a while. This15

has puzzled scientists in a wide array of sciences for decades, with Schrödingers ’What16

is Life’ being perhaps the most notable.17

Neuroscientist Karl Friston provided a descriptive framework with his Free Energy18

Principle, stating that living entities, cells, brains, etc (defined by Markov blankets) tend19

towards a state of minimal free energy, by mirroring its environment.[3]20

This framework has proven to be extremely successful in describing many biological21

processes and has been applied to a wide range of disciplines, including machine learn-22

ing. However, this framework is only descriptive: it does not explain why it minimizes23

its free energy. As such, a general explanatory or even predictive theory is still being24

sought after.25

Difficulties in thinking about entropy26

One of the reasons that a general explanatory theory has not been found yet, is27

that it is very hard to properly think about what is going on. Intuitive notions like28

’order’ and ’disorder’ or ’chaos’ are extremely contextual and subjective, and as such29

this order/disorder-dichotomy is fundamentally flawed and strictly useless for formally30

describing dynamic behavior in systems. Our biases in looking at systems is so deep that31

it is very hard to recognize flaws in ones thinking, and in failing to do so some even state32

that the second law of thermodynamics does not actually hold universally, and should33

be challenged. Maxwell’s demon is the most famous example of supposedly disproving34

the Second Law. But this paper argues that it is never the case of a flaw in the Second35

Law, it is always a flaw in one’s thinking about it.36

Most paradoxes come from thinking-errors that concern not properly recognizing ’the37

closed system’ (Maxwell conveniently forgot that his demon, in monitoring the gas-38

molecules, is itself actually burning a lot of energy while breathing, sweating, looking,39
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processing, and working the box, let alone its supporting metabolism and even its initial40

growth and learning to be able to work the box to begin with, which, including all this41

in the system, easily increases aggregate entropy after all, in full conformance to the42

Second Law. - As if a demon would do it for free..).43

2. Materials and Methods44

2.1. Sytems, micro/macro-states45

We need to think about systems at a higher level of abstraction, in order to be able46

to generalize what we are talking about. This is done best by the use of the notions of47

’microstate’ and ’macrostate’ of a system. The Second Law stating that entropy does48

not decrease is not so much law, but more a purely a statistical inference: over time49

it is more likely that a system will occupy a macrostate that has many microstates,50

than a macrostate will little microstates. This inference actually not only tells you that51

entropy will increase over time, it also tells you that it will increase as fast as possible (the52

Maximum Entropy Production Principle) [5] [4].53

The laws of thermodynamics originally apply to ideal gases. If we want to apply this54

law to other systems, it is imperative to be strictly precise in what we choose and define55

as ’the system’ and ’the macrostate and microstate’, and then check if we can define a56

meaningful entropic gradient over time (for which we can statistically infer that it can57

never be negative).58

2.2. State-spaces59

That can be challenging for many cases, but even more so when it comes to ’living60

systems’. In the myriad of currently defined types of entropies, ranging from economics61

to information theory and the physical sciences, the state-space is always a given, a62

constant, an unchanging environment; the state-space is just the state-space. It is a fixed63

host.64

But in order to explain the ’spontaneous emergence’ that defies the second law, we65

actually need a generalization of this ’constant state-space’ as a special case of ’a changing66

state-space’.67

Mathematically this translates to a dynamic dimensionality of the state-space, instead of the68

canonical fixed dimensionality.69

In expressing entropy mathematically, that would result in just adding another parameter70

or function that accounts for the dimensionality of the system at time t, but for a better71

understanding we will keep using the notion of ’a state-space’ that has its own dynamic,72

which in turn hosts the state of ’the system’ at hand.73

2.3. State-space curvature74

In a statespace of constant dimensionality it would indeed be impossible for life-75

forms to emerge and remain stable for some time.76

However, if you allow for the state-space (of the life-form) to increase in dimensionality,77

this provides for an alternative entropic gradient.78

And if this dimensionality increases fast enough, this gradient can outperform the ’canon-79

ical’ entropic gradient (on which the organism would fall apart). After all, entropy will80

not only increase, but it will increase as fast as possible.81

Such an increasing state-space dimensionality actually occurs by the continuous increase82

of complexity of a growing organism (new cells, the whole developmental biology pro-83

cess actually, etc), or, for example, the increasing (economic) complexity of a growing84

economy.85

Mathematically, since we are dealing with nonlinear complex-dynamic systems, the86

increase of complexity can yield chaotic attractors of entropy production. This allows us87

to introduce the notion of state-space curvature: this increase of complexity can, in ideal88

cases, provide a curvature-dynamic that ’catches’ the system, just like Einsteins dynamic89

’spacetime curvature’ can catch a body of matter.90
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The analogy sits in that for us observers the moon seems to move in a circle,91

but it is actually spacetime curvature; and just like that for us observers a living92

system seems to decrease in entropy, but it is actually statespace curvature.93

So a living organism (any SoC actually) does not actually self-organize or self-sustain,94

but it is being organized/sustained by its statespace-curvature. In other words, the95

’hosting system’ provides an increasing entropic gradient.96

2.4. The organism is not the system97

Although we now have a more generalized view on SoCs which provides a full98

explanation of its emergence (we generalized the canonical fixed-dimensional statespace99

as a special case of dynamic statespaces), we still have an issue.100

After all: in order for complexity to keep increasing (to maintain the entropic gradient),101

the organism would need to keep growing. And it is obvious that although most living102

systems do grow for some time, at some point they actually stop growing, and the103

entropy of the organism does not increase anymore. So why does the organism not104

collapse, as soon as it stops growing?105

In order to understand this, we have to distinguish between ’the system’ (caught in the106

state-space curvature) and ’the organism’. Mathematically we can define the system as107

a constant concept, but the living organism is not a constant entity at all: it breathes,108

sweats, eats, drinks, etc. Every other second the actual material composition will differ:109

molecules are constantly being added and substracted from the organism. As such, the110

organism is not the system. For us humans the difference is imperceivable, but it is111

critical in order to fully understand what is going on.112

The dynamics of the biological composition has a strong analogy with a wave at sea:113

the top of the wave is analogous to ’the organism’, and this top constantly changes in114

material composition. If you define ’the system’ to be the organism (the top of a wave) at115

time T = 0, then at T = 1 ’the system’ will only have some of its particles still at the top116

of the wave, and the rest is flushing away in the sea, in full conformance to the Second117

Law. ’The organism’ is NOT ’the system’.118

We can now understand that the life-span of an organism can be understood as a wave119

on some state-space curvature, and this analogy even continues until the death of the120

organisms: mathematically it is the same dynamic as a breaking wave.121

2.5. Fractality of systems122

It will be evident that, if we think of a state-space curvature, the state-space itself123

probably classifies as a complex-dynamic system as well. Choosing what we define as ’a124

system’ (an organism, a cell, an ecosystem, a tornado, a weather-system, an economic125

market, etc) is always arbitrary. After all, the dynamics of the system and the dynamics126

of state-space influence each other, so you can also think of them as a single dynamic127

system.128

You can define ’a tornado’ as a system and then identify the hosting weather-system as a129

dynamic state-space. In this case it is clear that determination of which molecules would130

be part of the tornado-system is futile: it would change every microsecond. This is the131

reason that the mathematical field of nonlinear, complex dynamic systems does not deal132

with particles or cells or entities, but only with their dynamics. And these dynamics can133

show patterns like chaotic attractors, and classifiable bifurcations. This actually tells us134

that what we think of as the conception and death of a discrete organism, are actually135

bifurcations within the larger, hosting complex-dynamic system (an ecosystem). From136

this systems-perspective there is no discrete organism., but only an complex-dynamic137

system with myriads of chaotic attractors of bifurcating into and out of existence, like138

eddies in a river.139

That helps us to overcome our bias (from the human perspective and scale) on what is140

generally meaningful to define in order to get a better understanding.141
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2.6. Simple calculation142

To demonstrate for a simple system that the entropy gradient towards a higher
dimension exceeds the gradient in the same dimension, consider a system of 4 marbles
within a 2D state-space of 4x4 cells. The entropic gradient is the difference between Smin
and Smax.
For this system the entropy S can be calculated by the simple formula S = ln W, where
W is the number of microstates that correspond to a macrostate (quadrant-based even
distribution).
The lowest entropy that this system can have equals the entropy of least freedom, e.g.
all in a corner. This yields

Wmin,2D = 4 × 3 × 2 × 1 = 24

permutations.143

144

Figure 1. Minimum entropy

The highest entropy, all within their own quadrant with maximum freedom, yields

Wmax,2D = 16 × 12 × 8 × 4 = 1660

possible permutation .145

146

Figure 2. Maximum entropy

The entropy-gradient

dS2D = Smax − Smin = ln(1660)− ln(24) ≈ 4.2

For the 3D-case, we have a grid of 4x4x4. Again, the lowest entropy possible is given by
all the 4 marbles in some corner, yielding

Wmin,3D = 6 × 5 × 4 × 3 = 360

solutions. If we seperate the cubic structure into 4 equals parts, the marbles will have
maximum freedom. First marble can choose from 64 options (claiming 1 cubic quadrant),
second has 48 left, third has 32 left, last quadrant leaves 16 options, so a total of

Wmax,3D = 1, 572, 864
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permutations. The gradient

dS3D = Smax − Smin = ln(1.572.864)− ln(360) ≈ 8.3

In other words: it is much more likely that the system will traverse into the 3D-grid,147

than that it will remain within the original 2D-grid. The degree of freedom increases148

with an increase in dimensionality of the statespace.149

3. Results, applicability150

This paper has provided a generalization of the thermodynamics for complex-151

dynamic systems. The applicability of this generalization is not limited to ’living systems’.152

It also applies to other domains, such as weather-systems: for example: a tornado does153

not self-organize, but the hosting weather-system provides the entropic gradient that pro-154

vides for a chaotic attractor for nonlinear dissipation of temperature/pressure/humidity155

differences. The tornado emerges and dies like a wave in the sea. Of course the dimen-156

sionality of the state-space for living organisms is orders of magnitudes higher than the157

dimensionality of the tornado, but the mathematical principle is exactly the same.158

Another application concerns ’the economic system’, ranging from transactional micro-159

market-structures (the quant-domain) to traditional economic growth and macro-economics.160

Yes the economic system has thermodynamic aspects. Not concerning entropic dissi-161

pation of money (this does not hold), but transactional entropy concerning settlement162

of suppy and demand: a market-system ’wants’ to settle (dissipate) supply and demand163

as much and as fast as possible. Chaotic non-linearity optimizes through infrastructural164

clustering of settlement (exchanges) and (with higher dimensionality from increasing165

complexity (IT-revolution)) even bifurcating towards temporal clustering of settlement166

(High Frequency Traders).167

Also, recently, a lot is going on around solving the black hole paradox in relation to168

entropy, for which state-space curvature through increase of complexity provides a full169

explanation.170

4. Discussion171

Some complex-dynamic systems are actually fundamentally driven by maximizing172

entropy, but at a high level of abstraction. Recognizing this can provide a much better173

understanding of their behavior.174

The generalization of the state-space of a system as a special case of dynamic state-spaces175

allows us to introduce the notion of state-space curvature, which can provide for a176

specific entropic gradient in dimensionality for the state of the system, which outperforms177

the ’canonical’ entropy gradient, which would degrade the system towards (disorder),178

and as can yield and sustain an ’orderly’ state of a system.179

This synthesis of the statistical Principle of Maximum Entropy Production and complex-180

dynamic systems provides for a fully explanatory framework for the ’spontaneous’181

emergence and sustainability of emergent, orderly patterns in non-linear, chaotic systems,182

that is widely applicable.183
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Abbreviations186

The following abbreviations are used in this manuscript:187

188

MEPP Maximum Entropy Production Principle
SOC Self-organizing criticality

189
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