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Abstract

The maximization of entropy S is accepted as an inevitability (as the
second law of thermodynamics) by statistical inference alone. The
Maximum Entropy Production Principle (MEPP) states that not only
S maximizes, but Ṡ as well: a system will dissipate as fast as possible.
There is still no consensus on the general validity of the MEPP even
though it shows remarkable explanatory power (both qualitatively and
quantitatively), and has been empirically demonstrated for many do-
mains.
In this theoretical paper I provide a generalization of state-spaces, and
then show that the maximization of Ṡ actually comes from the same
statistical inference, as that of the 2nd law of thermodynamics.
For this generalization, I introduce the concept of the poly-dimensional
microstate-density of a statespace. This concept also allows for the ab-
straction of ’Self Organizing Criticality’ to a bifurcating local difference
in this density.
Ultimately, the inevitability of entropy production maximization has
significant implications for the models we use in developing and mon-
itoring socio-economic and financial policies, explaining organic life at
any scale, and in curbing the growth of our technological progress, to
name a few areas.

Introduction

In the last few decades, several attempts have been made to explain the
occurrence and stability of life-forms, or living systems. Most notably, the
alleged conflict between ’autopoiesis’ and the second law of thermodynam-
ics is still unsolved [PN71]. Despite the impressive progress and multidisci-
plinary approaches in this field, there is still no conclusive consensus on any
of these aspects [RBF17].

This theoretical paper does not present yet another new theory to explain
life, but rather a generalization of our existing theoretical frameworks, that
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Fig 1: Contourmap of W in a monotonically increasing statespace-density

provides for a simple yet elegant demonstration of the inevitability of the
occurrence of Self Organizing Criticalities, in a certain class of statespaces.

The maximization of entropy

The well-known Boltzmann equation for entropy in a closed system is:

S = −kB lnW (1)

where W indicates the number of microstates that correspond to a certain
macrostate.
The well-known Second Law of Thermodynamics tells us that the state of a
system will tend towards macrostates with a higher W . The trivial example
of such a macrostate is a homogeneous distribution.
It’s irreversibility comes from statistical inference: the state of a system has
a higher probability to have a macrostate with many microstates, than a
macrostate with little microstates. Therefore, over time, it’s W (and S) will
increase up to some maximum (see Figure 1).

The maximization of entropy-production

Not only will a system maximize its entropy S, it will do so as fast as possible
(maximization of Ṡ). This is called the ’principle of maximum entropy pro-
duction’ [Dew03] [Dew05]. This principle has been empirically validated for
many different domains like the atmosphere [Pal75] [Kle10] [OOLP03], crys-
tallization [Hil90], enzyme reactions [DVBF17] and the economy [TMS20].
Intuitively this makes sense, but this principle is still debated, and its ubiq-
uitous validity has not been demonstrated yet [Pal05] [Mar10] [MS14].
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A generalization of state-spaces

By convention we consider the state-space of a system having some dimen-
sionality n, so we can describe the state of a system as some w ∈ Rn, for
example. This dimensionality is also a measure of complexity in a non-linear
dynamic system.
We now introduce the concept of a poly-dimensional state-space, i.e. a single
state-space that contains regions with differing dimensionalities.
Also, we generalize from a discrete to a continuous (fractal) dimensionality.
This allows for continuous gradients in dimensionality, within the states-
pace.
In fact, many of the systems we know have a state-space of this poly-
dimensional class: these are the complex non-linear dynamic systems like
our atmosphere, ecosystems, economies, technological systems, financial sys-
tems, etc.
(For semantics sake, one can also state that a state-space does have a single
dimensionality and has regions in which the state occupies a lower dimen-
sionality.)
Now we can consider state-spaces with a single dimensionality as a special
class of poly-dimensional state-spaces.

Microstate density

A poly-dimensional state-space can show areas where dimensionality (com-
plexity) increases (or decreases) relatively fast. This means that, in that
region of the state-space, there are much more micro-states that correspond
to a certain macrostate, or rather: a region with a high density of available
microstates.

The inevitability of entropy production maximiza-
tion

As stated above, in any state-space the state of the system tends towards
a macrostate with more microstates. In a single-dimensional state-space
this dynamic is called ’dissipation’. But in a poly-dimensional state-space
a region with a higher dimensionality also provides macrostates with more
microstates.
These areas are visualized in Figure 2. It clearly shows these ’waves’ of
micro-state density.
So the same statistical inference applies: if the state of a system enters a re-
gion with ascending dimensionality (more microstates), the state progresses
on this ascent because it has the highest probability to tend towards the
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Fig 2: Nonlinear contourmap of W , or micro-state density, based on local complexity-regions
(which allow for higher entropy production), and dissipation

state with the most microstates available locally, ’locally’ being the key as-
pect! By definition, this yields the highest amount of entropy production
possible.
So it is the same statistical inference as that of entropy maximization, but
then in a region of high poly-dimensional density, instead of a region with a
single dimension.
This shows the inevitability and ubiquitous validity of entropy production
maximization.

Self-organizing criticalities

We have one generalization left, and that is the one towards dynamic state-
spaces. All kinds of external and internal dynamics can alter the state-space
itself, as the state finds the way of maximum entropy production. Especially
the poly-dimensional density-distributions can change: local maxima may
emerge and disappear. These can be described as bifurcations from unstable
to stable attractors (e.g. limit cycles) and vice versa, of non-linear entropy
production dynamics. These local maxima, where S̈ = 0, are clearly visible
in the contourmap in Figure 3 (which is a more extreme version of Figure
2).
It is the set of micro-states ~x which satisfy:

∂2S(~x, t)

∂t2
= 0 (2)

If such a local maximum emerges, and the state of a system is caught in its
basin of attraction, we recognize this process as a self-organizing criticality.
Eventually such a maximum will disappear again, and this implies a collapse
of the Self-Organizing Criticality. For organic systems, this is called death.
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Fig 3: Regions with high gradients of complexity, which allow for self-organizing criticalities

The state decreases in dimensionality again, and resumes its dissipative
course, or gets caught in another basis of attraction.
In other words, these areas mark the emergence of what we call ’order’, but
from this generalization it is actually an acceleration towards more disorder.
Or rather: order and chaos are formalized into relative concepts (instead of
discrete), which should clarify many semantic discussions about what life is.

Dependancy on initial conditions and dynamics

Whether or not the state of a system actually reaches such a self-organizing
criticality, depends on its initial condition, as shown in figure 4. But it
also depends on the dynamics of the state-space. If you consider the (open)
system of a tree, its state-space changes over time, because of changes in
the regional ecosystem and in the local weather-conditions, for example. If
there is a period of severe drought, existing local maxima can bifurcate away.

Higher-level maximization

The example of the system of a tree is a good example of a fractal super-
structure. The dynamics of the state-space of this tree depend on at least
its surrounding ecosystem and the weather. But these are also nonlinear dy-
namic systems, with highly intricate state-spaces with many local maxima
of entropy production of their own. And towards the micro-level, all the cells
of the tree, and in between its leaves and its seeds, can be seen as subsys-
tems with their own dynamics and state-spaces. So, ultimately, the choice
of what you consider a (sub)system is strictly arbitrary, as these dynamics
are all related. The same goes for our economic system, or a technologi-
cal system. All these systems can be seen as superstructures, hierarchical
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ensembles with some fractal interdependency of non-linear dynamics, from
micro to macro-level.
And from the same statistical inference as described above, eventually all
these related dynamics will tend towards an optimal distribution of local
maxima of entropy production, throughout the total ensemble.

Results and discussion

In this article I have shown that the Maximization of Entropy Production
that we observe in many domains, actually follows from the same statistical
inference as that of the maximization of entropy itself (i.e. the second law of
thermodynamics). It is just a difference between monotonic gradients and
local maxima, of microstate-density within the state-space.
This observation has significant impact on our understanding of the world
around us, as it applies to many, if not all, domains. Next to the obvious
example of meteorology, it explains the ’autopoiesis’ of life and other struc-
tures. It can even explain many macro-trends in our financial systems, tech-
nological domains, our socio-economic domains, and administrative buroc-
racies. Also, many trends in the IT-revolution and globalization should be
understood from this perspective: these trends have increased the number
of local maxima, and their densities, because of an increase in (local) com-
plexity (dimensionality), which significantly alters existing dynamics with
many wanted and unwanted consequences.
Ultimately this can also help in developing much more effective and empiri-
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cally based policies at many levels, as every policy is then actually a matter of
increasing or decreasing complexity in some subregion, to keep them within
some thresholds that are aligned with some normative valuation framework,
for example.
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